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We find in our quaternionic version of the electroweak theory an apparently 
hopeless problem: In going from complex numbers to quaternions, the calculation 
of the real-valued parameters of the Cabibbo-Kobayashi-Maskawa matrix 
drastically changes. We aim to explain this quaternionic puzzle. 

1. INTRODUCTION 

In this paper we review some of the basic properties of the quaternionic 
electroweak theory (De Leo and Rotelli, 1996), based on the one-dimensional 
local gauge group U(1, q)LI U(1, C)r [quatemionic counterpart of the Glashow 
(1961) group]. Notwithstanding the recent success in manipulating the non- 
commutative quaternionic field in quantum mechanics and field theory (Adler, 
1986a,b, 1988, 1989, 1994a,b, 1995, 1996b; Adler and Millard, 1995, 1996; 
De Leo and Rotelli, 1994, 1996b; De Leo, 1996a,b,d), quaternions must be 
treated with prudence. For example, we meet with a puzzle in our version 
of the Salam-Weinberg model (Weinberg, 1964; Salam, 1968), namely, how 
to reproduce the right calculation of the real-valued parameters of the Cabi- 
bbo-Kobayashi-Maskawa (CKM) matrix (Cabibbo, 1963; Kobayashi and 
Maskawa, 1973) by quaternions. 

Historically, the quaternionic field was introduced by Hamilton (1969) 
in 1843, and after the fundamental contributions to quaternionic quantum 
mechanics by Finkelstein et al. (1962, 1963a,b, 1979) (foundations of quater- 
nionic quantum theories, quaternionic representations of compact groups, 
etc.) quaternions were somewhat an enigma for physicists. Quaternions was 
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restored to life by the work of Horwitz and Biedenharn (1984) (quaternionic 
tensor product, second quantization, and gauge fields). In the Preface of 
Adler's (1995) book we read, "In particular, my decision to embark on a 
detailed investigation of quaternionic quantum mechanics arose both from a 
question posed to me by Frank Yang and from my study of a preliminary 
version of the 1984 paper by Larry Biedenham and Larry Horwitz sent to 
me by the authors." Today Adler's book represents the main reference one 
working this research field. 

Let us briefly discuss the features of quaternionic numbers. The quaterni- 
onic algebra has been expounded in a series of papers (Rembieliriski, 1980a,b; 
Dimitric and Goldsmith, 1989; Razon and Horwitz, 1991a,b, 1992; Nash 
and Joshi, 1987a,b, 1988, 1993; Horwitz, 1993) and books (Gilmore, 1974; 
Altmann, 1986); the reader may refer to these for further details. For conve- 
nience we repeat and develop the relevant points. 

The quaternionic algebra over the real field ~ is a set 

= {a + i13 + j~ + k~lct, 13, ~/, ~ E ~} (1.1) 

with the operation of multiplication defined according to the following rules 
for imaginary units: 

i ~ = j2 = k 2 = - 1  

i j =  k, j k =  i, k i = j  

j i  = - k ,  kj = - i ,  ik = - j  

In going from the complex numbers to the quateruions we lose the property 
of commutativity (ij --/= j i ) .  This represents a challenge in manipulating such 
a numerical field. 

Working with noncommutative numbers, we must admit the existence 
of left and right multiplication; in fact the left action of the operator (~ on 
quaternions q 

~q 

is in general different from its right action 

q~ 

In order to distinguish left/right actions, we will use the following terminology 
for right:acting operators 

(1 IC)q -- qC 

Namely, we introduce the concept of barred operators. 



Quaternionic Electroweak Theory and CKM Matrix 1167 

Among the favorable results in using barred  operators, we recall the 
possibility to reformulate special relativity by quaternions (De Leo, 1996c). 
Explicitly, the quaternionic generators of the Lorentz group are 

k l j  - i l k  
boost (ct, x)  

2 

i l k  - k l i  
boost (ct, y)  2 

boost (ct, z) j li - i l j  
2 

i -  11i 
rotation around  x 

2 

rotation around  y j - 1 I j 
2 

k -  I lk 
rotation around  z 

2 

The four real quantities which identify the space-time point (ct, x, y, z) are 
represented by the quaternion 

q = ct  + ix + j y  + kz  

This gives the natural generalization of the Hamilton's (1969) idea. The Irish 
physicist used quaternions to describe the rotations in the three-dimen- 
sional space 

e(iUx + Juy + kuz)Oi2( ix -I-jy + kz  ) e - (  iux + juy + kuz)OI2 (1.2) 

where u -- (ux, Uy, uz) identifies the rotation axis and 0 the rotation angle. 
This paper is structured as follows: In Section 2 we review some of the 

basic properties of the quaternionic electroweak theory; in particular, we 
discuss the complex scalar product, Dirac equation, complex projection of 
the Lagrangian, quaternionic Higgs field, and one-dimensional local gauge 
group. In Section 3 we explain our quatern ion ic  puzz le ,  by showing that in 
our quaternionic version of the Salam-Weinberg model, the CKM matrix 
must be "complex-barred." In the last section we draw our conclusions. 

2. QUATERNIONIC ELECTROWEAK THEORY 

An essential ingredient in our version of quaternionic quantum mechan- 
ics is what Rembielifiski (1978) called the adoption of a complex geometry 
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(complex scalar products). This choice is certainly less ambitious than that 
of Adler (1995), who advocates the use of a quaternionic geometry to reformu- 
late a new quantum mechanics. Nevertheless we recall that up to a decade 
ago the use of quaternionic wave functions made the definition of tensor 
products ambiguous. Complex geometry allows us to overcome many prob- 
lems due to the noncommutativity of quaternionic numbers. 

Let us address the questions of whether and how quaternionic quantum 
mechanics (QQM) with complex geometry relates to the observed physical 
world. 

2.1. Momentum Operator in QQM 

Although there is in QQM an anti-self-adjoint operator 0 with all the 
properties of a translation operator, imposing a quaternionic geometry, there 
is no corresponding quaternionic self-adjoint operator with all the properties 
expected for a momentum operator. This hopeless situation is also highlighted 
in Adler (1995, p. 63). 

The usual choice p := - i a  still gives a self-adjoint operator with the 
standard commutation relations with the coordinates, but such an operator 
does not commute with the Hamiltonian, which will be in general a quaterni- 
onic quantity. Nevertheless we can overcome such a difficulty using a complex 
scalar product 

1 - i l i  
(OIq~)~ - - -  (~lq~) (2.1) 

2 

and defining as the appropriate momentum operator 

p -=- -/91i (2.2) 

Now the momentum operator (2.2) is formally real and so it commutes with 
a generic quaternionic Hamiltonian; further, by using a complex geometry, 
it represents self-adjoint operators 

(t~10q~i)c = (0t~ilq0)c 

Complex projections of scalar products were used by Horwitz and Bied- 
enharn (1984) in order to obtain consistently multiparticle quaternionic states. 
In a recent paper (De Leo and Rotelli, 1995a), we also find an explicit 
definition of quaternionic tensor product. 

2.2. Dirac Equation and Complex-Valued Lagrangian 

An interesting application of quaternions in quantum physics is repre- 
sented by the quaternionic formulation of the Dirac equation (Rotelli, 1989a). 
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The need to use complex scalar products no longer relies solely on arguments 
relative to tensor product spaces (multiparticle systems), but is explicit in 
the single free-particle wave equation. 

In order to write relativistically covariant equations we must treat the 
space components and time in the same way, hence we are obliged to modify 
the standard equations by the substitution 

ic9 t "") ~tl  i 

and so the first modification that must be made in rewriting the Dirac equa- 
tion is 

Ot, i = (c~.p + 13m)t~ [p = -~91i] (2.3) 

The Dirac algebra upon the reals (but not upon complex) has a two-dimen- 
sional irreducible representation with quaternions. Thus the standard 4 • 4 
complex matrices (OL, 13) reduce to 2 • 2 quaternionic matrices. A particular 
representation is given by 

13=(01 O1)' a = Q ( O 1  0) [Q = (i, j ,  k)] 

Notwithstanding the two-component structure of the wave function, all four  
standard solutions appear 

ue-~e x, uje-;p x, ve-;ex, vje-~px 

The trace theorems are modified (Rotelli, 1989b), but the standard electrody- 
namics is reproduced. 

Let us now discuss the use of the variational principle within QQM. 
This is nontrivial because of the noncommutative nature of quaternions. As 
a first hypothesis we consider the traditional form for the Dirac- 
Lagrangian density: 

= ~/~0~d~i - m ~ ,  (2.4) 

The position of the imaginary unit is due to the fact that, in QQM, the ~ 
operator is more precisely part of the first-quantized momentum operator 
~ l i .  The previous Lagrangian is not Hermitian; in fact, 

The correct form of the kinetic term reads 

(2.5) 

This modification of equation (2.4) renders our Lagrangian Hermitian. The 
requirement of hermiticity, however, says nothing about the Dirac mass term 
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in (2.4). It is here that appeal to the variational principle must be made. A 
variation ~ in ~ cannot be brought to the extreme fight in equation (2.5) 
because of the imaginary unit in the first half of the expression. The only 
consistent procedure is to generalize the variational rule that says that ~ and 

must be varied independently. We thus apply independent variations to 
and @i, respectively ~@ and ~(@i). Similarly for ~ and ~(i~). Now to obtain 
the desired Dirac equation for ~ and its adjoint equation for ~, we are obliged 
to modify the mass term into 

~,~ m - 
= - ~  [d/~J - i~Oi] (2.6) 

The final result for ~ is (De Leo and Rotelli, 1995c) 

1 m 
~D = ~ [~ /~0~ i  -- i(0~)~/~@] -- ~- [~t~ -- i-~t~i] (2.7) 

Considering this last equation, we observe that it is nothing other than the 
complex projection of equation (2.4), 

~i~ - 1 - i l _  / ~ (2.8) 
2 

Indeed, while ~ in equation (2.4) is quaternionic and with the modification 
of ~k in equation (2.5) Hermitian, the form given in equation (2.7) is purely 
complex and Hermitian. Obviously we can write down a quaternionic Her- 
mitian Lagrangian and obtain the correct field equations through the standard 
variational principle by limiting ~ to complex variations (notwithstanding 
the quaternionic nature of the fields). We consider this latter option unjustified 
and thus select for the formal structure of ~ that of equation (2.7). 

2.3. D o u b l i n g  o f  Solut ions  in Bosonic  E q u a t i o n  

The Dirac equation represents a desirable example of the so-called 
doubling of  solutions in QQM with complex geometry. Obviously such a 
doubling of solutions occurs also in the bosonic equations. For example, we 
find four complex orthogonal solutions for the Klein-Gordon equation, with 
the result that, in addition to the two normal solutions e -ipx (positive and 
negative energy), we discover two anomalous solutionsje -ipx. The physical 
significance of the anomalous solutions has been a "puzzle" for the authors. 
Only recently, by a quaternionic study of the electroweak Higgs sector (De Leo 
and Rotelli, 1995b) have we been able to identify anomalous Higgs particles. 

As remarked in the previous subsection, working within QQM, we need 
to generalize the variational principle. If q~ represents a quaternionic field, 
its variations ~p and ~(~pi) - i~r must be treated independently. In fact, we 
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c a n  v a r y  q) = ~o 1 -]-jq02 (~01, 2 complex), leaving Cp = q~l -Jq02 unchanged. T h e  
complex projection also applies to the Klein-Gordon Lagrangian; explicitly 

~K~ = (0v~q~tOv~q~ -- mEq0tq~)c 

where 

(~0t~0)c ~--- q~It01 + ~0~02 

represents the quaternionic generalization of the standard term ~0T~0~. The 
complex projection kills the unpleasant pure quatemionic cross term 

,Tj~02 - , ~ j ,~  

To conclude this brief discussion on the quaternionic variational principle 
[complete details are given in De Leo and Rotelli (1995b, 1996c)] we recall 
the main results found: Going from complex to quaternionic fields, we must 
admit quaternionic variations for our field, but only complex variations for 
our LagrangMn. 

Since the only fundamental scalar could be the Higgs boson, in order 
to interpret the anomalous scalars we believe it to be natural to concentrate 
our attention on the Higgs sector of the electroweak theory. Moreover, the 
number of Higgs particles, before spontaneous symmetry breaking, is four 
and this agrees with the number of quaternionic solutions to the I"dein-Gordon 
equation. The Higgs Lagrangian, in the quaternionic electroweak theory, is 

~.n = (O~qflO~P)c -- 1~2(qotq0)c -- IX I(qotqo)c 2 (2.9) 

where 

~p -- h ~ + jh § [h ~ h § complex fields] 

The Lagrangian (2.9) is obviously invariant under the global group 

U(1, q)l U(1, c) 

which is the quatemionic counterpart of the complex Glashow group 

SU(2, c) x U(1, c) 

2.4. The Quaternionic Local Gauge Group 

We wish now to construct a fermionic Lagrangian invariant under the 
quaternionic group U(1, q). If we consider a single-particle (two-component) 
field ~, we have no hope to achieve this. In fact the most general 
transformation 

---> fOg (f, g quaternionic numbers) 

is right-limited from the complex projection of our Lagrangian and left- 
limited from the presence of quaternionic (two-dimensional) ~ matrices. So 
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we could only write a Lagrangian invariant under a right-acting complex 
U(1, c) group. The situation drastically changes if we use a "left-real" (four- 
component) Dirac equation 

where 

(~[~O~li - m)O = 0 

r -- ~/~-matrices with/-factors substituted by 11 i 

In this case we could commute the quaternionic phase and restore the invari- 
ance under the left-acting quaternionic unitary group U(1, q). 

The massless fermionic Lagrangian (for the first generation) in our 
quaternionic electroweak model reads 

with 

d~l = e + j r ,  

(2.10) 

~Jq = d + ju  (e, v, d, u complex fermionic fields) 

This Lagrangian is globally invariant under the following transformations: 

�9 Left-handed fermions: 

eL + jVL "-> e-fgn)Q'~(eL + jVL)e (g/2)ir~t)~ 

dL + jUL ---> e-(g/2)Q'a(dL + jUL)e (g/2)ir~L)[3 

�9 Right-handed fermions: 

eR - -~ eR e(~I2)iY~R)[~ 

dR + jUR --> dRe (gl2)iY~)f~ + jUR e(g/2)W~'R)fl 

The weak-hypercharge assignments are 

YI L) = - 1, y~qL) = +.~, y~R) = _ 2, y~aR) = _ { ,  y ~ )  = + 4 

I n  order to construct a local-invariant theory, we must introduce the following 
quaternionic gauge field: 

W~ = W ~ + j W ~  [W ~ = (B~ + i W l ) l , f 2 ,  W ~  = (W~ - iW~)/v/2] 

(2.11) 

W ~ for U(1, q)L, B ~ for U(1, c)r  
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by the covariant derivatives 

~ ( e L + j V L ) - - [ o ~ - - g ( i l W ~ + j l W ~ + k l W ~ ) - - ~ I B ~ i ] ( e L + j V L )  

~ e R  =- (0 ~ - g lB~i)eR 

The substitution 0 ~ -+ ~ in (2.10) makes our Lagrangian locally 
invariant. 

Full details concerning gauge kinetic terms, Yukawa coupling~ interac- 
tions among gauge bosons and fermions, and symmetry breaking are reported 
elsewhere (De Leo and Rotelli, 1996a). 

3, THE QUATERNIONIC PUZZLE 

In our discussion of the electroweak model, we limited the number of 
fermion generations to one. We now lift that restriction and consider the 
implication of having N generations. Although the existing experimental 
situation supports the value N = 3, we shall take N arbitrary in our analysis. 

3.1. Complex Mixing Matrix 

In this subsection we briefly recall the fermion mixing of the standard 
(complex) Salam-Weinberg model. By convention, the mixing is assigned 
to the Q = 1/3 quarks by 

J~ch UL,a'y~dL,a : -UL,a'YwULaf~DL, ftvdL'~ - ~ ' "  = - '  ' = UL,~/ aL,,~ (3.1) 

where 

d'~,~ = U~.,~DL,~d~.,~ = V~dL,~ (et, ~,  ~1 = 1 . . . . .  N )  

There is no difficulty in passing UL through ~/~ because the former matrix 
acts in flavor space, whereas the latter matrices act in the spin space (obviously 
we also use the commuta t ion  of complex numbers). 
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Thus the Q = 1/3 quark states participating in transitions of the charged 
weak current are linear combinations of mass eigenstates. The quark-mixing 
matrix V, being the product of two unitary matrices, is itself unitary. 

An N • N unitary (complex) matrix is characterized by N 2 real-valued 
parameters. Of these, N(N - 1)/2 are angles and N ( N  + 1)/2 are phases. Not 
all the phases have physical significance, because 2N - 1 of them can be 
removed by quark rephasing (Donoghue et al., 1992). This leaves V with 
(N - 1)(N - 2)/2 such phases. Then, the unitary N • N (complex) matrix 
for N quark generations possesses (N - 1) 2 observable real parameters. 
Obviously, in going from complex to quaternions, the calculation of the real- 
valued parameters of the CKM matrix drastically changes. 

3.2. Complex-Barred Mixing Matrix 

Working with the quaternionic field (the primes signify that the states 
which appear in the original gauge-invariant Lagrangian are generally not 
the mass eigenstates) 

"U t O'L,,, = d'L,~ + J L,~ (a = 1 . . . . .  N )  

we must expect to have N • N barred-quaternionic unitary matrices instead 
of complex unitary matrices. 

Remembering that a barred-quaternion, in terms of real quantities, is 
expressed by 

9~ - q + p l i -- Otq -~- i~q + J~lq + k~q + (otp + i~p + j~/p + k~p) [ i 

with 

Otq,p, ~q,p, "~q,p, ~q,p E 

we have 

barred-quatemions D quaternions D complex 

and further 

barred-quaternions D barred-complex [elements like ot + 131i -- ~]  

We can now give the general formulas for counting the generators of 
unitary N-dimensional groups as a function of N: 

U(N,~) :  4 N + 8 N ( N -  I ) _ 4 N  2 
2 

U(N,q):  3 N + 4 N ( N -  1 ) _ N ( 2 N +  1) 
2 

U(N,~): N + 2 N ( N -  1 ) = N 2  
2 
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For a detailed discussion of quaternionic groups, the reader can consult De 
Leo and Rotelli (1996d). 

Considering barred-quaternionic number as elements for our N • N 
unitary matrix, we quadruple the real-valued parameters; consequently we 
increase the real-valued parameter counting of the CKM matrix. This puzzle 
is soon overcome by noting that the mixing matrix has to commute with the 
gauge group Ut~(l, q) l Ur(1, c). This restriction reduces to barred-complex 
the elements of the matrices which mix left-handed quarks. Finally, we have 

d:'L:, = Dt.,o,~dL,~ + jUL,,~UL,~ (et, ~ = 1 . . . . .  N)  

with 

DL, UL unitary barred-complex matrices 

dL,R, UL.R complex mass eigenstates 

The transformation from the gauge basis states to the mass basis states 
turns out to have no effect on the structure of the electromagnetic and neutral 
weak currents. As example of this, consider the quark contribution to the 
weak currents: 

{ [~IL,.DLa -- -aL,~UL~j] 

C 

After the complex projection we find no f lavor-changing neutral currents; 
mixing between generations does manifest itself in the system of quark 
charged weak currents: 

and so 

where 

-g ~IL,,~DL,~f~'y~(jl W~ + k l W~)jULfs.vUL,.y + h.c. 
2 

J~ch = 71L,o,'Y~.DLo, aUt.,a.~ut.,,(W~ - iW~) + h.c. 

= dl.,o:y~Vo,.tuL,,t(W~ -- iW~) + h.c. 

V,~.~ = D~,,~f~UL, f~.v 

(3.3) 

4. CONCLUSIONS 

The primary interest of the author in recent years has been to demonstrate 
the possibility of using quaternions in the description of elementary particles. 
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The complex projection o f  scalar products and Lagrangians represents the 
fundamental  ingredient in reformulating quaternionic quantum theories. 

The noncommutat ive  nature o f  quaternions makes the standard approach 
to the physical world complicated. A complex  geometry seems necessary (if 
not  sufficient) for reproducing standard quantum theories. In this work we 
have reviewed the quaternionic electroweak theory, based on the one-dimen- 
sional local gauge group UL(1, q ) l U r ( 1 ,  c) (minimal quaternionic unitary 
group for our Lagrangian) and overcome the apparent puzz le  concerning the 
calculation o f  the real-valued parameters o f  the C K M  matrix. 
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